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KINEMATIC DYNAMOS AND THE EARTH’S
MAGNETIC FIELD

By C. L. PEKERIS, Y. ACCAD anp B. SHKOLLER
Department of Applied Mathematics, The Weizmann Institute, Rehovot, Israel
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The Bullard-Gellman formalism is applied to investigate the existence of convergent solutions for steady

kinematic dynamos. It is found that the solutions for the Bullard-Gellman dynamo, as well as for Lilley’s

modification of it, do not converge. Convergent solutions have been found for a class of spherical convec-

tive cells which would be stationary in a perfect fluid in the absence of rotation and of the magnetic field.

By calibrating the theorctical magnetic dipole so as to fit the observed value at the Earth’s surface, one

can find a dynamo in the above class which also matches the observed equatorial magnetic dipoles.

g Therc is 2 dynamo S3° which has a rate of total ohmic dissipation of only 1.8 x 1016 erg s~! for an assumed

< clectrical conductivity of 3 x 10~¢ c.m.u.t "This is one thousandth the rate of tidal dissipation, and onc

| hundred thousandth the rate of heat outflow from the surface of the Earth. The required velocities are

of the order of 103 cm s~1, and the average magnetic cnergy density is 4 erg cm~3, The internal structure

of the magnetic field in this model shows a dynamo mechanism situated in the outer part of the liquid core
and is thus insensitive to possible rigidity of the material in the ‘inner core’.

I

1. INTRODUCTION

SOCIETY

This investigation is concerned with the dynamo theory of the origin of the Earth’s magnetic

THE ROYAL

ficld, proposed by Larmor (1919). Larmor’s ideca that the field is produced through self-induction
by convection currents which are assumed to cxist in the conducting liquid core of the Farth
was put into question by Cowling (1934), who proved that a magnetic ficld which has an axis
of symmetry cannot be sclf-maintained. The theory of the self-exciting dynamo was revived by
Elsasser (1946), and later Bullard & Gellman (1954) madc the first study of a model for a self-
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426 C. L. PEKERIS, Y. ACCAD AND B. SHKOLLER

exciting stationary spherical dynamo. Bullard & Gellman restricted themselves to the case of the
kinematic dynamo, in which the convection currents are assumed to be given and to be maintained
without change. In the kinematic dynamo one disregards the hydrodynamic equation

oUfot+ (U.grad) U+2Q2 x U = —%grad (p+@) H x curl H) +vV2U, (1)

1
~Tm (
and investigates whether, for a given velocity field U, the induction equation

OH[0t = AVZH +curl (U x H) (2)

possesses a sourceless solution which includes a component dipole field and meets the boundary
conditions. Here H denotes the magnetic field, A = }=k, k£ denoting the electrical conductivity,
£ is the rotation vector of the Earth, p the pressure, p the density, ® the potential of the gravita-
tional and centrifugal forces, and v the kinematic viscosity. The condition that the field produced
by the dynamo should include a dipole component is required, of course, because the Earth’s
magnetic field is predominantly a dipole, to within 20 9%, The induction equation (2) follows
from Maxwell’s equations

curl H = 4rj, (3)

j=kE+UxH), (4)
curl E = —0H/ox, (5)
div H = 0, (6)
div E = 4mqc?, (7)

upon elimination of the electric vector E from (3), (4) and (5). Here ¢ denotes the electric charge
density, and ¢ the velocity of light. In (4) we have omitted terms which are of the order of U?/c?
(Bullard 1955).

If we take the radius of the core b as the unit of length, 47kb? as the unit of time, and measure
velocities in units of U, then equation (2) takes the form

OH[0t = V2H+ Rcurl (U x H), (8)
with the magnetic Reynolds number R defined by
R = 4wkbU,. (9)

Following the Bullard-Gellman formalism (Bullard & Gellman 1954), we represent the solution
H: of (6) for the interior of the core by

) 1
Hi = §/”("ij Ls,(n 7, (10)
; S(r) 0¥, Ty(r) ¥y
H0=§[‘7m+m“a?,§]’ (11)
; Sy(r) OXy  Ty(r) Y,
Hj = 7 [rsinﬁa_qﬂ_—_r_—@—é]’ (12)
where
Y, = Pye(cos 0) [cos my @, sinmy @], (13)

the dot denoting differentiation with respect to r and the summation on g implying also
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summation over m,. The functions S, represent the poloidal components of the field and 7} the
toroidal. Outside the core, the field He is represented by

b\A+2
g = S A8+ 5,0 ;) T (14)
. b\#+20Y,

== 2p50) ;) (15)

b\#+2 1 Y,

e __ _ hd — P
H == 265,(1) (r) S0 3g " (16)

The continuity conditions on H at the surface of the core (r = 1) require that

Sp(1) +BSs(1) =0, Ty(1) = 0. (17)

In the case of the stationary kinematic dynamo, Bullard & Gellman (1954) showed that the

induction equation
VEH+ Rcurl (Ux H) = 0, (18)

subject to the boundary condition (17) and to the condition of finiteness at the origin, leads to an
eigenvalue problem for the magnetic Reynolds number R defined in (9).
In the discussions of the dynamo theory so far, the liquid was assumed to be incompressible:

div U = 0, (19)

although this assumption is not essential (Pekeris 1971). With (19), an appropriate representa-
tion of the velocity field U is, again,

u =242t g 1y, (20)
$,1) 3T, Tofr) O,

“""“'{-"['57‘ aa+rsin06$]’ (21)

Uy =3 [Sa(’) Y, T,r) aYa]

a

rsin0g 1 00 (22)

Using the representations (10) to (12) and (20) to (22) in the induction equation (18), we are
led by the Bullard-Gellman formalism to a series of simultaneous ordinary differential equations
of the form (Bullard & Gellman 1954)

28, —y(y+1)S,=R3% S E, (80 Sp T Ty, (23)
rzTy— Yy +1)T, =R % G, (82 Sps T T). (24)

Here F, and G, are linear functions of the unknowns and of their first and second derivatives,
with coefficients depending on the velocity functions S, and 7.

2. THE BULLARD-GELLMAN DYNAMO
The specific form of the basic differential equations (23) and (24) depends on the assumed
velocity field (20) to (22), because of certain ‘selection rules’ (Elsasser 1946) which result from
33-2
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the coupling term U x H in (18). The most thoroughly investigated case is the Bullard-Gellman
(1954) dynamo, in which the convection is represented by

U, = %Qs(r) P2 (cos ) cos 2¢, (25)
Uy = er(r) a—%P% (cos ) cos 2¢, (26)
Uy = m;nOQS(r) P2 (cos 0)%cos 2¢_Q1;(r) E)Pl(gzgs 0), (27)
g =13(1—-1)% Qp=er’(1—r). (28)

It is composed of a poloidal component $%° (the superscript 2¢ referring to the cos 2¢ factor) and
of a toroidal component 7;. A test as to whether the Bullard-Gellman convection cell (25) to
(28) can act as a self-exciting dynamo is that the eigenvalue R of (18) should converge as the
number of terms in the expansions (10) to (12) is increased. The original work of Bullard & Gell-
man was followed by an investigation of Gibson & Roberts (1969),1 and subsequently by Lilley
(1970). We have repeated the calculations, and the results are summarized in table 1. We have
used finite differences, with an interval % of 0.01 or less. The starred values were also obtained
by expanding the unknown functions into series of spherical Bessel functions. The latter are
solutions of the homogeneous equations (23) and (24). We found this expansion to be quite
feasible, thus offering a convenient method of treating the nonstationary dynamo (Elsasser
1946). The values quoted from Lilley are those derived with his finest subdivision.

Clearly the eigenvalues shown in table 1 do not show a tendency towards convergence.}
Hence, none of the four models investigated can be considered to have been proven capable of
maintaining a stationary self-exciting dynamo.

3. STATIONARY SPHERICAL VORTICES

In looking for other convective cells to be tested as to their capability of acting as self-exciting
dynamos, we shall adopt the criterion that the motion be stationary in the case of a perfect fluid (Pekeris
1972). This means that we seek solutions of the hydrodynamic equation (1) when it is truncated

to the form
(U.grad) U = —(1/p) grad (p + D). (29)

In the case of an incompressible fluid, spherical vortices which are solutions of (29) exist (Pekeris
1972). The class discussed so far is characterized by a single spherical harmonic Y, in (20) to
(22), with

S, (r) = x7,(x), x=Ar, (30)

T(r) = ASy(1), (31)
where j,(x) is the spherical Bessel function of order a:

Jn(®) = (7[22) 2, 14 (#). (32)

+ The coefficient 112 appearing in the equation for S° on p. 583 of Gibson & Roberts should be replaced by %8.
+ The non-convergence of the Lilley model was found independently by Roberts (1972) and Gubbins (1972).
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The vanishing of the radial component of velocity «, at the surface of the core requires, by (20)
and (30), that A, be a root of the equation

ja(/\v) =0. (33)
These solutions are Beltrami flows, which, for n > 1, satisfy the equation

curl U = AU. (34)

They represent spiral flows, whose ‘ helicity’ (Moffat 1969) has the sign of A.

In the liquid core of the Earth the Coriolis force — 20 x U and the magnetic braking force
— H x curl H are, of course, not negligibly small. Our aim was first to ascertain whether a spheri-
cal vortex which is stationary in an inviscid liquid can produce a self-maintaining dynamo.
Should that prove feasible, then, as a next step, we would consider the modifications introduced
by the rotation and by the magnetic braking forces.

In the definition of the magnetic Reynolds number R in (9) it was implied that the velocity

field U is represented by
U = U F(rjb), (35)

where U, represents the amplitude of the velocity, and the function F is of the order of unity.
Accordingly, we shall apply a normalizing factor to the velocity components (20) to (22) such
that

— 2w 4 1
" =f d¢f sinadaf rdr (2 4+ +1) = br. (36)
0 0 0
Writing » for a, we put u, = 11—47%—1-_-1—)8”&, (37)
1[, 00, T, oY,
118, 0¥, , oY,
U =E[MW—T”—5§]’ (39)
.. 1
where T, = AS, and S, + [/\2 _n_(%—_)] S, = 0. (40)
Substituting in (36), we get
_ 1 1
A% = N, f dr [”_('.’;j_ﬂ 24824 Tf;] — 2N, f S2dr = $rd2, (41)
0 0
1 1
since, by (40), we have j dr [n(nr—iz- 1) S2 +S',2,] = Azfo S2dr. (42)
0

Equation (42) implies that in our convective cell there is equipartition of kinetic energy between
the poloidal and toroidal components of the velocities (Chandrasekhar & Kendall 1957). In

(41),
_ 2mn(n41) (n4-m)!

M= D oy MO (43)
N, = ﬂ%ﬁ—”ﬁ—l—) (m = 0). (44)
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1 1
Now f S2dr = (%/\Tc)f rdrd g (Ar) = (A7) I3 13(A); (45)
0 0

hence, by (41), A, = BN T, 52, (46)

4. THE §%° CONVECTIVE CELL

The convective cell which we studied in the first instance is of the type S%°, with

Sn = Qn(r) Yn(03 ¢)’
Y, = P%(cos0) cos 2¢ = 3sin?6 cos 2¢, (47)

AL A

and Qn(r) = y(§mx) Jyg(x) = [(;—2—- 1) sinx-gcosx], x = Ar. (48)
In the computations we evaluated eigenvalues R’ on the assumption that the factor 4 in (37) to
(39) is unity. Hence the eigenvalue R defined in (9) is given by

R = AR'. (49)
By (46) we have 4, = (A8m)i AT, (A,)], (50)
which varies with the root A, of Jg(A,) = 0. (51)

OF

In the general case when Y, in (37) to (39) is given by

Y, = % (A™cosme + BUsinme) P& (cos0), (52)
m=0
4, is determined from

m=n 3
4, = M1 5 5 N T(am)+ (B (53

Using the representation (37) to (39), with (47) and (48), we solved the Bullard-Gellman sys-
tem of equations (23) and (24) by finite differences. The integration interval 0 < r < 1 was
divided into equal steps % of 0.01, and the determinant of the resulting equations (23) and (24)
was solved for the eigenvalue R. Spot-checks were carried out by taking z = 0.005. The eigenvalue
R did converge, as is shown in table 2 for the case of the third root A; of (51). A more stringent
test of convergence is the magnetic energy integral I defined in (A 10), and even more so the ohmic
dissipation integral J of (A17). In order to obtain manifestly convergent results for the latter
integrals one has to refine the eigenvalues to many more decimals than are given in table 2,
since slight errors in the eigenvectors are amplified by the huge factors Ny; in the case of N = 98,
for instance, Niz = 6.57 x 102,

The values in table 2 show an oscillation with a damped amplitude. The extrapolation was
made by fitting the data to

R, = R, + e~ cos fx+ Be~**sin fx. (54)

A

A

SOCIETY

The functions were normalized so that
S = — 1. (55)

OF

The minus sign was chosen because the dipole magnetic field at the north pole, which is pro-
portional to §9(1), is downward. The degree of convergence of the poloidal dipole field $9(r)
is shown in figure 1, as the number N of the functions included in the expansion (10) to (12)
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varies from 50 to 98. The distribution of the toroidal field T9(r) is shown in figure 2. Although 79(r)
is greater by an order of magnitude than $Y, the resulting components of the dipole field
2 S9(r) . T9(r) . S
HY, = ;ES‘{(r) cost, HYy= -——1—£——)—sm0, HY, = #r(—)smﬁ, 3 (56)
are of Comparable magnitude, as is shown in figure 3. However, 7' contributes 54 %, of the total
magnetic energy integral I of (A 10) shown in table 2, while the dipole field contributes 18 %,
The higher order functions converge at a slower rate with increasing N, as is shown in figures 4
and 5.
The rate of convergence of the solution is shown in figure 6, where we have plotted the inte-
grals I(S%) representing the contributions of the poloidal field components S to the magnetic
energy

1 1 ‘ .
1(5%) = 2 38 [ [+ 1) (Sz)+ (S5)7 (57)

In each 8 group the biggest contribution comes from the terms $% or $2-1. Figure 7 shows the
contributions I(7%") of the toroidal field components 777 to the magnetic energy.
The magnetic energy density ey is obtained from (A 9) by dividing Ey; by the volume of the core

e = (35m) 1%, (58)
where I' = 0.3043(afb)® = 1.88G. (59)

The scaling factor I" arises from the fact that the observed spherical harmonic coefficient of the
dipole field (Cain, Daniels & Hendricks 1965)

| @ = —0.3043G C (60)
is related, through (10) and (55), to $9(1) by -
2(afb)3gy = 289(1) I. (61)

Using the value of I = 538.4, we deduce from (58) that the magnetic energy density is 57 erg cm~3,
With a density of about 11 g cm=2 for the core, it would take a velocity of about 3 cm s~ to produce
an equal kinetic energy density. On the other hand, the eigenvalue of R = 29.31 yields, by (9),
a value-of 0.0022 cm s~ for the velocity scale U, of the convection. Here we have assumed that
the electrical conductivity x = 3 x 10~¢e.m.u. It follows that the magnetic energy density is
greater by about a factor of 108 than the kinetic energy density in the convective cell.

Taking the value of J = 5.27 x 10* we get, from (A 16), for the rate of total joule heat dissipa-
tion,

D =43x10"ergs™ (62)

'This is small in comparison with the rate of tidal dissipation of 1.5 x 1019 erg s~ ( Jeffreys 19770), or
with the rate of heat flux from the Earth of 95 x 109 ergs—1.

5. MATCHING THE EQUATORIAL MAGNETIC DIPOLE COMPONENTS

Since the induction equation (2) is linear in H, its amplitude is calibrated by fitting $9(1) to
the value of — 0.3043G for the dipole term g in the expansion of the observed external magnetic
potential W:

W =a % f} (afr)n*+1 AT (g cos mep + B sin mp) P2 (cos 0), (63)
n=1m=0

34 Vol. 2v75. A.
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B 50,72,84 7
] | | | | ] | | l
0 04 08
7lb
Ficure 1. Distribution of the dipole field Y inside the core. $3¢ convective cell.
S, = Q(r) P%(cos0) cos 2¢ T, = AQ(r) P%(cos0) cos 2¢,
Q(r) = J(Emar) Jy(Ar), A=A, = 12.32294,
24 T T T | l | | l |
B 60 N=7284 |
16— -
— : N=50 —
S T
50 60,72,84
8 -
B N=-60,72,84
] | | | | l l | ]
0 04 08
rlb

Ficure 2. Distribution of the toroidal field 77 inside the core. S convective cell.

Sy = Q(r) P§(cos0) cos 26, T, = AQ(r) P (cos 0) cos 2¢,
Q(r) = Y (FmAr) Jg(Ar), A=Ay = 12.32294,
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Ficure 3. The amplitudes of the components of the dipole field in equation (56) for the
S2¢ convective cell. A = A3 = 12.32294.
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Ficure 4. Distribution of the poloidal field S? inside the core. S2° convective cell.
A=A, = 1232294,
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where AR =[2(n—m)!/(n+m)!]%, m >0,
= 1, m=0. ) (64)

By evaluating H = —grad W and equating cocflicients with the corresponding terms in (14) to
(16), we obtain for the theoretical values of the non-dipole harmonic coefficients:

(A gw)en = 1.878n(b[a)m+2550(1), (65)
(A ) o = 1.878n(b[a)n+2 88 (1). o (66)
0 l T | T | | T T
B ‘ N=T284 =
ol . . Z .
50 60,98
B 50 N=60,72,84,98 7]
(H
-04f ]
— N=98 -
84 '
72
06} 60 -
50
1 | | I | 1 | | |
0 04 08
r[b

Ficure 5. Distribution of the toroidal field 77 inside the core. $3° convective cell.
A=A, = 12.32204,

Of these, the biggest observed terms are
gt = —0.0217G, h} = 0.0576G, (67)

which represent the deviation of the magnetic axis from the axis of rotation, or the equatorial
components of the magnetic dipole. For the S convective cell the theoretical equatorial dipole terms
are strictly zero as a consequence of the selection rules. The first non-vanishing theoretical
non-dipole term is (43),, = 0.0315G which, along with the other higher order harmonic coeffi-
cients, is of the right order of magnitude.

By adding an S3° term to the $% surface spherical harmonic, we can generate a non-vanishing
g} component, and similarly the combination (S% + €53°) generates an A} term in the magnetic
field. The observed equatorial dipole terms in (67) can be matched approximately if instead of
$% we choose an angular factor -

Y, = (83— 0.14481° — 0.4008%)
= 3(sin26 cos 2¢) — 0.144 cos Osin 0 cos ¢ — 0.400 cos Osin Asin @).  (68)
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The resulting theoretical surface harmonic coeflicients for the magnetic field are given in table 3.
We see that the equatorial dipole terms are approximately matched, while the theoretical higher
order harmonic coefficients are of the right order of magnitude.

102
0 -
7 N O ]
L o5t :
oS %5050
4
10 _ 3 o SisOS 50 -
i os ;
C
. o) Sgsos'] -~
i oS3 ]
oS %c ossc
51l osp  osyosy i
= F .
- 059 oste ]
_ 0 i
_ Fosese _
oS4e
B oS§° oS$° 7]
oSg® 8¢y 12
107 089 oSifosii® ~
- oSg* ) :
N oSy’ ]
B oS¢ osiy
i oSfie ’
B oS%® oSf 1
4s 8s. Q0
w11 1 S8 oSSy
2 4 8 12

n
Fieure 6. The magnetic energy integral I(S™) for the poloidal field components S,
1 1
I(S™ = - Nm f [n(n+1) (S7[r)2+ (S™)?] dr.
0
S2¢ convective cell. A = A; = 12.32294.

The combination (68) has a physical basis. If we take a rectangular coordinate system
x =sinflcosd, y=sinlOsingd, z= cosb, (69)

then ¥, in (68) becomes
1Y, = (2% —y%— 0.144xz — 0.400y2) (70)

]

1.00526x"% — 1.0386y'2 + 0.03332"2,

where we have effected an orthogonal transformation to a rectangular coordinate system
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(x',y’,2") passing through the principal axes of the surface (70). The transformation is
given by

x Y z
X 0.9969 0.00775 -0.0777
y 0.00670 0.9818 0.1898
z' 0.0729 —0.1895 0.9792

The coordinates of the z’-axis on the unit sphere are given by
x=0.0729, y=—0.1895 z=0.9792. (71)
This corresponds to 0=11.7°, ¢ =—-69° (72)

which are the coordinates of the magnetic axis of the Earth. In the magnetic spherical coordinate system
(x,5 ?/,'Z'), Yg of (68) is given by

Y, = 1.0219(52°)" 4 0.10004(52)". (73)

L0 o e A Y N R R B
<rT(1) N
102~ -
- ]
B ngc .
2 ook |
S UF T ]
[ oTH ]
; orts -
I~ ngc -

omgs  °T
1 3 ng °T’?c &
C g0 T'8° N
B oTy 9 i
i o7 .
i ore T |
2¢ym2 -
il 1y 9TEeTe | ) g g aThe
2 1 8 12
n

Ficurr 7. The magnetic energy integral I(T™) of the toroidal component 77" of the field.

1
I(Tm) = 1N;" f (T™2dr; A = A, = 12.32204.
™ 0
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The S3°(r) and S3¥(r) functions obtained from the solution of the induction equation for the
convective cell represented by (68) are proportional to $§(r) throughout the core, indicating a
projection of a magnetic dipole vector on to the axis of rotation. The magnetic Reynolds number
R and the dissipation integral J are close to the values given in table 2 for the $3¢ model.

The surface harmonic ¥, in (68), which was adjusted to match the observed equatorial mag-
netic dipole terms in the case of the third root of (51), also applies to all the other roots. As seen
from table 4 below, the first mode has a rate of ohmic dissipation which is less than one-fourth of
that of the third mode.

TABLE 3. SPHERICAL HARMONIC COEFFICIENTS FOR THE MAIN FIELD/10~¢ G

W= a § § (afr)"+1(gm cos mep + k" sin m¢p) Pm(cos ).

n=1m=0
source year g g B & g R g h2
Erman & Petersen 1829 —3201 —284 601 -8 257 -4 —14 146
Gauss 1835 — 3235 —311 625 51 292 12 -2 157
Adams, J. C.; 1845 - 3219 —278 578 9 284 -10 4 135
Adams, W. G.
Adams, J. C.; 1880 — 3168 —243 603 —49 297 —175 61 149
Adams, W. G.
Schmidt 1885 —3168 — 222 595 — 50 2178 -7 65 149
Fritsche 1885 — 3164 —241 591 -35 286 -5 68 142
Neumeyer & Petersen 1885 — 3157 —248 603 ~53 288 175 65 146
Dyson & Furner 1922 — 3095 —226 592 —89 299 —124 144 84
Jones & Melotte 1942 — 3039 —218 555 —117 294 - 150 157 51
Afanasieva 1945 — 3032 —229 590 —125 288 — 146 150 48
Vestine et al. 1945 — 3057 —211 581 —127 296 — 166 164 54
Finch & Leaton 1955 — 3055 — 227 590 —152 303 —190 158 24
Cain & Daniels 1940- —3043 —217 576 — 155 300 —195 157 20
62
Sae — 3043 0 0 0 0 0 0 315
§2¢—0.14453° — 0.40052 — 3043 — 227 589 -8 61 —23 0 315
§2° 4+ 0.02653° — 0.0175%° — 3043 —121 577 87 —101 237 23 462

6. A KINEMATIC DYNAMO OF MINIMUM OHMIC DISSIPATION

In the preceding section we have demonstrated that a manifestly converging solution of the
steady induction equation (18) exists for the case of the third mode of an % convective spherical
cell described in §3. The representation of the solution for H included all spherical harmonics
through order 13, making a total of 98 unknown functions, and the degree of convergence is
exhibited in table 2 and in figures 1 to 7. We found that steady kinematic dynamos also exist for
other cases of spherical convective cells belonging to the class discussed in § 3. In starting with the
% cell we were motivated by a conjecture that the dynamo might be driven by the tidal forces
(Pekeris 1971) which have that angular form. The third mode was chosen because it appeared
to converge most easily. Subsequent investigation showed that all the modes of the $3° convective
cell yield steady kinematic dynamos. The results are given in table 4. In the case of the first mode
A; we had to include all spherical harmonics through order 15 (128 unknown functions) before
the solution visibly converged. The magnetic Reynolds number R decreases from a value of 99
for A, to an asymptotic value of 26.4 for the higher order modes. The ohmic dissipation integral
J increases monotonically with the increasing order v of the mode, and so does the magnetic
energy integral 1. With I = 111 for the first mode, the magnetic energy density is 12 erg cm=3,
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while the rate of total ohmic dissipation is 9.9 x 10 ergs—'. With R = 99, the velocity U, of con-
vection required 0.0075 cm s~

Since the ohmic dissipation for the first mode of the S cell turned out to be less than for the
third mode discussed previously, we looked for a convective cell of even lower dissipation. We
found that in the class of S convective cells, J increases with increasing m, and that whenm = 1
the convergence was doubtful. The class of models $2¢ shown in table 5 yields a model of minimum
dissipation S2°. The value of J for the first mode of S3¢ is less by a factor of 5.4 than for the first
mode of $%°, and by a factor of 24 relative to the third mode of §3°. The ohmic dissipation in
S% of 1.8 x 1016 erg s~ is of the order of tidal dissipation in the Bristol channel (Grace 1936), and
is only about one-thousandth of the total tidal dissipation in the world oceans. The capacity of
some of the large electric power stations in operation is 10%ergs=— (1000 MW). The velocity
scale U, is only 0.0017 cm s~%. An attempt to adjust the $3° model so as to reproduce the observed
equatorial dipole components is shown in table 3.

TABLE 4. THE CRITICAL MAGNETIC REYNOLDS NUMBERS R FOR THE
HIGHER MODES OF THE S%° CONVECTIVE CELL

A, are the roots of (51); N denotes the total number of functions solved for, I the magnetic energy integral
(A10) and J the ohmic dissipation integral (A17).

mode
v N R I J
Ay 128 99.2 111 1.2x 104
Ay 98 36.1 234 2.0x 10
Ay 98 29.4 538 5.3 x 10*
A 60 28.0 924 1.2x 108
A 60 27.3 1.4x103 2.3x 108
Ag 60 26.9 2.0 x 103 4.1x 108
A, 60 26.7 2.9%x 103 7.1 x 108
Ag 60 26.6 3.9x 108 1.2x 108
Ao 60 26.5 6.7 x 103 2.8x 108
Ais 60 26.4 1.9% 104 1.5% 107
Ag0 60 26.4 4.2 x 104 5.6 x 107

TABLE 5. SOLUTIONS FOR THE S2¢ CONVECTIVE CELLS

ey is the magnetic energy density; D denotes the total ohmic dissipation. The ohmic dissipation was computed
for an electrical conductivity of £ = 3 x 10~¢ e.m.u.

model N R I 10-3J eyferg cm™3  10-16D/erg st
Sze 128 99.2 111 12.1 11.8 9.9
S 84 20.5 47 2.5 5.0 2.0
Sz 84 22.4 37 2.2 3.9 1.8
A 84 23.1 48 3.5 5.1 2.8
Sz 84 24.0 55 4.8 5.8 3.9
Sz 84 24.0 66 6.6 7.0 5.3

7. POLAR AND EQUATORIAL DIPOLE DYNAMOS

The convective models discussed so far were all longitude-dependent through the factor
cos mg or sin m¢ appearing in ¥, of (13). With a view to applications to the Earth’s magnetic field,
we also limited ourselves to that chain of functions in the solutions of (23) and (24) which starts
with the magnetic dipole term S9(r). Still within the latter restriction, let us consider convective
cells which have axial symmetry and are represented by (20) to (22) with

Y, = P,(cos0), S,(r)= (%n/\r)%,fwé(/\r) = Q,(r), (74)
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where A is a root of (33). Itis found that: (i) the solution H of the dynamo equation (18) is also
axisymmetrical; and that (ii) the Bullard—Gellman differential system (23) and (24) separates into
two chains, one containing only the poloidal functions S, of (10) to (12) (but not the 7j), and
another chain for the toroidal functions 7, which involves both the S and 7. This means that,
if a solution satisfying the boundary conditions exists, the poloidal functions can be solved for by
themselves, and the toroidal functions can then be determined from them. Actually, since, as
a consequence of the selection rules, the magnetic field is restricted to be axisymmetric, Cowling’s
theorem forbids such a solution.
This negative result can also be proven directly from the differential equations. The differential
equation for the dipole function S{(r) in (23) is
d d

7289 — 259 = 5 (r289—2r89) = R I { -

3(oc—1) a?(a+1) 0,50 Bo(a+1)%(a+2) 0.8
2(2c—1) (2a+1) ¥ % T 2(2a+1) (2a+3) TeT*H)

(75)
where S;_; are the solutions Sy of (10) to (12) with # = a— 1, and @, is defined in (74). Integrating
(75) with respect to r from 0 to 1 we get

S9(1) —289(1) =0, (76)

since @,(r) vanishes both at r = 0 and at 7 = 1. Equation (76) is, however, inconsistent with the
boundary condition (17), showing that S(1) = 0; i.e. in the case of axisymmetrical motion there is
no solution having a magnetic dipole term oriented along the axis of symmetry of the convective cell.

There are, however, dipole solutions oriented in the equatorial plane of the convective cell.
These arise from chains of equations (23) and (24) whose initial term is not S(r) but Si°(r) or
S15(r). In the latter chains, the $¢(r) function is missing. This is the class of dynamos discussed by
Gubbins (1972). Results for an equatorial dipole dynamo are shown in table 6. The axisymmetric
convective cell is represented by (74), with « = 2, and the solution starts with the equatorial
dipole function $i¢(r). No solution was found for the first convective mode corresponding to the
first root A; of (53), a result also found by Gubbins for his dynamos. The second and third modes
yield rapidly converging solutions, since in this chain only the functions S} (r) appear, and the
total number N of unknown functions for a given maximum order 7 of the spherical harmonics is
only 2n.

TABLE 6. SOLUTIONS FOR AN Y CONVECTIVE CELL STARTING WITH
THE EQUATORIAL DIPOLE FUNCTION S¢
n denotes the maximum order of spherical harmonics included; N the total number of unknown functions;

R the magnetic Reynolds number; I the magnetic energy integral (A10), and J the ohmic dissipation integral
(A17).

mode n N R I J
A, 15 30 no solution
Ay 25 50 25.369 129.90 8917
Ay 25 50 22.088 341.47 30109

The same eigenvalues R would also have been found for the chain starting with the Si5(r)
equatorial dipole, since the origin of longitude ¢ is arbitrary in an $3(r) convective cell. In addition
to the three chains starting with the dipoles $9(r), $i¢(r) and S}8(r), the S(r) convective cell
possesses a fourth independent chain starting with the function $9(r) and containing none of the
three dipole functions.

35 Vol. 275. A.
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In table 7 we list the functions in the solutions of the dynamo cquation (18) which exist for an
$3¢ convective cell. The indices give (n, m, ¢) or (n, m, s) of the functions S7°(r) and S7(r) appearing
in the expansion (10) to (12) for the solution. There are four independent chains. Chain A repre-
sents the solution for the polar dipole, oriented along the two-fold symmetry axis of the 3¢ flow,
which was discussed in tables 1, 2, 4 and 5. Chains B and C represent equatorial dipole
solutions. We found that in both cases B and C, dynamo solutions exist, as is shown in table 8.
The solutions for chains B and C are not identical, because the S2° cell does have a longitudinal
polarization. Actually the solutions for B and C would be interchanged if the direction of convec-
tion were reversed.

TaBLE 7. THE INDICES (n, m, ¢) AND (n, m, s) OF THE FUNCTIONS S7¢(r) AND S2(r) APPEARING
IN THE FOUR INDEPENDENT CHAINS OF THE EXPANSION (10) To (12) FOR THE SOLUTION OF
(18) FOR THE CASE OF AN 3¢ CONVECTIVE CELL

A B C b
10C 11C 118 20C
228 218 21C 22C
30C 31C 318 328
32C 33C 338 40C
428 418 41C 42C
448 435 43C 44C

TaABLE 8. EQUATORIAL DIPOLE SOLUTIONS FOR THE CHAINS B AND C OF TABLE 7

chain mode N R I 103 J
B A 40 34.7 234 17.8
B A, 40 16.7 1087 55.1
B Ay 40 15.6 2945 192
c by 40 17.4 39.5 1.36
C Ay 40 15.6 288 16.8
C A 40 15.3 781 67.6

@

It is interesting that the dissipation integral J = 1356 for the A, solution C is even lower than
in the model 3¢ listed in table 5, yielding a rate of total ohmic dissipation of only 1.1 x 106 erg s—1
for an assumed electrical conductivity £ = 3 x 10~%e.m.u. This, however, is not likely to be rele-
vant to the Earth’s magnetic ficld, since it is hard to conceive the origin of a convection whose
axis is oriented in the equatorial plane.

The chain D does not have convergent solutions; hence we conclude that there is no dynamo
of type D for an §%° cell. In the case of an 3¢ cell, there are only three independent chains, with B
and C of table 7 merged.

8. REPRESENTATION OF THE CONVECTION

Since most of our discussion is concerned with the $3° model, we shall attempt to describe its
motion. The velocity components are given by

Au, = (18[r?) Q4(r) sin? 6 cos 2¢, (77)
Auy = (6Q,[r) sin 6 cos 0 cos 2¢p — (6AQ,/r) sin Osin 2¢, (78)
— (6Q,/r) sin Osin 2¢p — (61Q,/r) sin O cos 6 cos 2, (79)

and Au¢
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3 . 3
where Qy(r) = ‘(W — 1) sin Ar — 5 €08 Art, (80)
and the normalization factor 4 is given by (50). The three-dimensional representation of this
flow is cumbersome, but insight can be gained by displaying the flow pattern in the equatorial
plane and in the meridional plane passing through ¢ = 0and 180°. Figure 8 ashows the flow in the
equatorial plane for the first mode. It can be derived from the stream-function

¥ = Qlsin2g. (81)
The flow is divided into four quadrants, with no fluid crossing the radii ¢ = 0, 99, 180 and 270°.
In the quadrants marked U the #, component is upward toward the north, and in those marked D,
downward toward the South. It is seen that in the equatorial plane the motion is spiral, the heli-
city being positive as in a right-handed screw, in accordance with the positive value of A in (34).
Since we assumed the value of A in (34) to be positive throughout the core, the helicity is positive
everywhere. The spiral nature of the flow is shown also in figure 85 which gives the stream lines
in a meridional plane passing through ¢ = 0 and 180°. The pattern follows the stream function

U = Q} cos? 0. (82)
In this plane also no fluid flows across the four quadrants, the velocity vanishing along the NS
axis. The centres of the toruses in figure 84 are situated at the points 7, = 0.675 where Q,(r,)
vanishes, and ¢ = 1=, $=, 37 and Z=n. The trajectories of particles starting from these centres lie
on the sphere 7, and have only a , velocity component, the velocity tending to zero as the polar
axis is approached.
We have integrated some particle trajectories by solving the equation

(_:1_r=ﬂ ﬂifzﬂ rsin0d¢= Uy (83)
ds  Ju|” ds  |u) ds [u]’
where the velocity components are given by (77) to (79), |u| denotes the absolute value of the
velocity, and ds an element of length along the trajectory. As an example, a particle that started
upward in the first quadrant of figure 84 came down in the fourth quadrant, up again in the first
and then down in the second quadrant.

Figure 9a shows the flow pattern in the equatorial plane for the second mode in the S% cell.
There is now a circle of radius r; = 0.63b where «, vanishes. For r < r, the flow pattern is similar
to that of figure 8. For 7 > r, the flow is reversed. The duplicity of the toruses is also seen in the
meridional section shown in figure 94. The flow pattern shown in figure 104 for the third mode
of the $3° model is divided into three zones, with spiral flow of opposite sign in adjacent zones.
Similarly, three zones are shown in the meridional section of figure 105.

The stream lines in the polar dipole model $%¢ of minimum dissipation (see table 5) are shown
in figure 11. The pattern of flow in the equatorial plane shown in figure 114 is similar to that of the
S$2¢ model. It is derivable from a stream function

¢ = Qisin2¢, (84)
where @,(r) is defined in (74). The stream lines in the meridional plane ¢ = 0°, 180° shown in
figure 115 are derivable from a stream function

¥ = Q5% cost 0(7 cos? 0 — 4). (85)
The diagonal lines on which u; vanishes pass through the angles 6 where cos? § = #. It is seen that

the motion is spiral with positive helicity everywhere.
35-2
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9. THE INTERNAL DISTRIBUTION OF THE MAGNETIC FIELD

A pictorial representation of the three-dimensional distribution of the magnetic field in the
core which is generated by the kinematic dynamos is difficult to make and would not be enlighten-
ing. Since, however, the dominant component in the field is the dipole term, which is axisym-
metrical, we shall describe the mean field H (Braginskii 1964) averaged over the longitude ¢:

— 1 2
(r,0) = 3 [ "B, 0,9) a9, (86)
According to (10) to (12) the mean field H is represented by the expansions
n(n + 1 - S9(r)dP, 4 dp,
H, = Z ( )So(r P, (cost), H,=73, 5) T H¢——Z () L (87)

n

In planes passing through the polar axis, the magnetic lines with components H, and H, are
parallel to the surfaces ¥z = constant, where the ¢ stream function ¥’ is given by

g = —sind X8 (r) dP,/dO. (88)
n
Similarly, the mean current J has components

A1) gy _Bmdn o SEdp,
o) T ( ) (COS 0) 4:TCb]0 = Z ’ @’ ":TCb]¢ = — }_‘ 7 W’ (89)

n n

dnlf, = X
n
and in a meridional plane the current is parallel to the lines 17 = constant, with

Yy = —sinf 3 T3 (r) dP,/d0. (90)
n
The meaning of ¥ is that in a cylindrical system of coordinates (p, z, ¢),
p .
2 [ Hopdp = 2xlynlp) ~ ¥al0)]. (91)

Taking ¥z = 0 on the polar axis, ¥z then represents the total magnetic flux crossing a disk of
radius p and centred on the z axis.

Figure 12 shows the distribution of the magnetic field H and of the electric current j generated
in the first mode of the $3° model. The magnetic field is given in gauss, and is calibrated in each
model so as to give a field of 1.88G at the boundary of the core, as deduced from surface observa-
tions by (59). The quantity j is given in units of (1/4wb) = 2.29 x 10~19 A cm~2. The position of the
‘inner core’ is indicated by the dotted circle, although in the calculations we assumed liquidity
down to the centre. Figure 12¢ shows the distribution of the mean magnetic field H(r, 0) inside
the core. The magnetic lines tread a single circle situated in the equatorial plane at r = 0.814
and marked by X. On the circle X lying in the equatorial plane the meridional components of H
vanish, as envisaged by Cowling (1934) in his original argument. We shall designate this as the
Cowling circle. Also on X, j,, shown in figure 124, has a maximum value of — 175, the negative
sign indicating a current flowing from east to west. Cowling’s injunction does not apply because
neither H nor j are axisymmetric. The actual distribution of the unaveraged current j, in the
equatorial plane is shown in figure 12a. The value of — 175 for j; on X is the average over the circle
marked X in figure 124. Along this circle j, varies from — 100 to — 650 at ¢ = 90°, 270°. The field

H{(r, 0) in figure 12¢ can be thought of as produced mainly by the intense E to W current belt
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centred on the equator in figure 124 near the position X. Interestingly, in the region of the ‘inner
core’ H is nearly uniform, as in a uniformly magnetized sphere. The averaged currents J in meri-
dional planes shown in figure 12g are matched both in position and in the proper direction by
the associated Hj shown in figure 12f. Hy is the field that one would expect to be produced by j
of figure 12 g, and its magnitude is of the same order as the components of H in meridional planes
shown in figure 12d. There is no dominance of the toroidal field over the poloidal, as was already clear
from the respective dipole functions shown in figure 3. At the position X of figure 12¢, the meri-
dional components of 7 do not vanish, nor does Hy. Note in figure 12g that along the NS axis, 7 is
southerly in the region of the ‘inner core’, while in the region of the ‘outer core’ it is northerly,
where it is very intense, as shown in figure 124. The oval-shaped boundary on which 17¢ vanishes
in figure 12f coincides with the line in figure 12 g where the stream function 15 of (88) vanishes.

Next we wish to examine how the pattern of the internal magnetic field in the dynamo is affected
by the order v of the mode, and by the order 7 of the spherical harmonic of the convective cell.
It is found that, as v is increased, the region of dynamo action is pulled in toward the centre,
while with increasing n the dynamo activity moves towards the surface. This points to a tendency
for optimal dynamo action on a scale [ which is less than the radius of the core b; it is achieved
in the case of large v by nodes along the radius, and in the case of large n by lateral nodes.

Figure 13 gives the internal field for the third mode of model $3°. In comparison with the pat-
tern for the first mode of $3° shown in figure 12, we see that the Cowling circle, marked by X,
is now at 7 = 0.385 close to the boundary of the ‘inner core’. The mean electric currenty shown
in figure 135 is again concentrated near the equator with a maximum value of — 1300 on the
Cowling circle X. The field inside the core is everywhere greater than in the first mode, in accord-
ance with the growth of the magnetic energy integral I with increasing order » of the mode, as
shown in table 4. Again, the azimuthal distribution of j; in the equatorial plane is peaked along
longitudes ¢ = 90 and 270°, reaching values of — 2750 there. The region of the ‘inner core’
is no longer uniformly magnetized in figure 13¢, owing to its proximity to the Cowling circle. The
electric current J along the NS axis in figure 13 ¢ now suffers six reversals.

Taking the first mode of model S, we get the pattern of the internal field shown in figure 14.
Here we have chosen $2° rather than $2 in order to preserve symmetry with respect to the NS
axis. With increased # the field has withdrawn from the interior of the core towards the surface,
asshown in figures 14dand 14 4. The Cowling circle in figure 14 ¢isnow located at 7 = 0.88 b nearer
the surface; there are two of them at @ = 49° and at 131°, and this holds also for theJ, field shown
in figure 14 5.

The S dynamo is of interest because of its minimum rate of ohmic dissipation. Its internal
structure, shown in figure 15, is characterized by a Cowling circle situated at » = 0.82b close
to that of the first mode of model $3°. j4 also has a maximum of — 40 on the equatorial plane near
the Cowling circle. There are, however, in addition, two other maxima at higher latitudes, one
of strength — 70 and another of + 40, whose combined effect apparently leaves the equatorial
maximum in dominance. The field is weaker everywhere, in accordance with the minimum
value of the magnetic energy integral I (table 5). The quantity 7 has two reversals along the NS
axis, as in model S2°.

10. EFFECT OF THE SOLID INNER CORE

Model S%, third mode, whose internal structure is shown in figure 13, is of questionable
relevance, not only because of its relatively high rate of ohmic dissipation (table 4), but also

36 Vol. 275. A.
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because its Cowling circle is close to the boundary of the inner core where there is evidence that
the material turns solid. We have treated a dynamo with a solid inner core for 7 < & = 0.36.
The solutions of (29) have to be modified to provide for a vanishing #, atr = w. Atr = & we also
imposed the boundary condition on the solutions $,; and 7} of (18):

wS/,.(w) —(B+1)84(0) =0, Ty(w) = 0. (92)

For the case of the third mode of an $3° model we found a convergent solution with eigenvalues
and other characteristics which were close to those of the full liquid model.

11. SuMMARY

The purpose of this investigation was to determine whether convergent solutions exist for the
stationary kinematic dynamo equations. We follow the Bullard—Gellman (1954) formalism and
aim to solve the Bullard—Gellman system of ordinary differential equations with a sufficiently
fine integration step /4 and a high enough order 7 of spherical harmonics in the expansion, so as
to leave little doubt as to the convergence or non-convergence of the solution. In §2 we treat
the class of Bullard-Gellman (1954) dynamos, including the modification introduced by Lilley
(1970). Results are given in table 1 for four such kinematic models, and in none of them did the
cigenvalue of the magnetic Reynolds number R converge.

Next we treat a class of spherical convective cells characterized by the property of being
stationary in a perfect fluid (Pekeris 1972). These are Beltrami flows in which the vorticity vector
is parallel and proportional to the velocity vector (equation (34)). They are expressible by the
product of a spherical Bessel function of the radius and a single spherical surface harmonic. At the
surface of the core the radial component of velocity vanishes, but not the tangential component.
The motion is spiral, the sense of rotation coinciding with the sign of A in equation (34) which was
taken to be positive in all of our models. The convection is normalized so that the r.m.s. velocity
for the whole core is unity.

In §4 we treat the kinematic dynamo based on the third mode of the $%¢ convective cell, where
the superscript 2c implies a longitudinal factor of cos 2¢. This flow is represented by equations
(47), (48), (77) to (80). The pattern of flow in the equatorial plane is shown in figure 104. For
the third mode there are two interior spheres on which #, vanishes, so that the flow divides into
three sets of cells, with opposite directions of motion in neighbouring cells. (See the simpler flow
for the first mode in figure 8.) It is seen that in the upgoing cells (U) and in the downgoing cells
(D) the sense of spiralling is everywhere positive, as in a right-handed screw. This is also clear
in the flow pattern in a meridional plane which is shown in figure 104.

The third mode of the $3° model yiclded a convergent solution for the dynamo. The results are
shown in table 2. As the order of spherical harmonic z was increased to 13, the eigenvalue R
approached the asymptotic value of 29.31 by a damped oscillation, which could be represented
by equation (54). The degree of convergence of the eigensolutions as # is increased is displayed in
figures 1, 2, 4 and 5. A more stringent test of convergence is shown in figures 6 and 7 giving the
poloidal and toroidal components of the total magnetic energy. On calibrating the theoretical
dipole component so as to fit the observed value of — 0.3043G for the magnetic dipole term at the
Earth’ssurface, we find that the average magnetic energydensity for this third mode is 57 ergcm=3,
and the rate of total ohmic dissipation is 4.3 x 1017 erg s~%. The latter is about two orders of magni-
tude smaller than the rate of tidal dissipation. The required velocities are only 0.002 cm s~ for
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an assumed electrical conductivity £ = 3 x 10-8e.m.u. The poloidal component of field in the interior
is comparable to the toroidal component, as shown in figure 3. It will be interesting to ascertain how this
feature will be affected when the Coriolis force is included.

Itis possible to take, instead of $3°, a combination of spherical surface harmonics S3'¢, S75 which
matches not only the observed magnetic dipole term but also the observed harmonics of order
one g1 and A}, these being the largest among the non-dipole terms, and representing the deviation
of the magnetic axis from the axis of rotation. The result is shown in the line before the last in
table 3. The principal axis of this surface coincides with the axis of the Earth’s magnetic dipole.

We started with the third mode because its convergence was immediately manifest, even though
we had to go to a system of 98 unknown functions, involving the solution of a (banded) deter-
minant of order 9800, before it was assured. It was found subsequently that the second mode of the
$%¢ model, as well as the first mode, also yielded convergent solutions. In the latter case we had to
go to a system of 128 unknown functions (n = 15) before the convergence could be established.
The results of all the modes of the $3° model are shown in table 4. As the order v of the mode
increases, the Reynolds number R approaches an asymptotic value of 26.4. The magnetic energy
integral I and the rate of total ohmic dissipation J increase with increasing order v of the mode,
so that the first mode is preferable from an energetic standpoint.

Confining the search to the first mode only, we find (table 5) that the model S2¢ has a minimum
ohmic dissipation amounting to only 1.8 x 10 erg s—* or only 1800 MW, which is within the range of
existing power stations. This dynamo would require an energy input of only one-thousandth
the rate of tidal dissipation, or only one-hundred-thousandth the rate of total heat outflow from
the surface of the Earth. The pattern of flow in this model is shown in figure 11. The helicity in
the spiral motion is positive throughout, and the scale of the cells is about one-third the radius of
the core.

The internal distribution of the magnetic field in the core for the $2¢ model is shown in figure 15.
The mean magnetic field (H,, H,), averaged over ¢, in a meridional plane is shown in figure 15¢.
The Cowling circle on which H, and H, vanish is marked by X and is situated in the equatorial
plane atr = 0.825, close to the surface of the core. Within the region of the ‘inner core’ the mean
field is nearly uniform, as in a uniformly magnetized sphere. No violence is done to Cowling’s
theorem because neither the unaveraged H, nor H, are independent of longitude. The structure of
the internal field for other models is shown in figures 12 to 14, and is discussed in §9.

All of the dynamos discussed so far have as a leading term in their chain of solutions the dipole
function $9(r). They produce a magnetic dipole which is oriented along the axis of symmetry of
the convective cell, i.e. the polar spherical axis. We designate them as polar dipole solutions. When
the convective cell is axially symmetric and is represented by a zonal spherical harmonic, it does
not possess polar dipole solutions. It can, however, have equatorial dipole solutions where the S9(r)
term is missing and is replaced by a term $7° or §}* (Gubbins 1972). Results for equatorial dipole
solutions are given in table 8.

12, CONCLUSIONS

We have shown that stationary self-exciting dynamos exist for a class of spherical convective
cells which would be stationary in a perfect fluid in the absence of rotation and of the magnetic
field. Since the Coriolis and magnetic forces are not negligibly small compared to the pressure
gradient, we have sought to mitigate the kinematic approximation by seeking such kinematic
dynamos in which the rate of ohmic dissipation would be at a minimum. The model $3¢ shown

37-2
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in figures 11 and 15 has a rate of ohmic dissipation of only 1800 MW, which is one-thousandth the
rate of tidal dissipation and one-hundred-thousandth the total outflow of heat from the Earth’s
surface. It is of the order of magnitude of the capacity of existing power plants. The velocities
required are of the order of 10~3cms~. For an $3° model, which has a dissipation greater by a
factor of about 5, one can also match the observed equatorial magnetic dipole terms along with
the calibrated polar dipole term. This matching is feasible, to a lesser extent, also with the 3¢
model.

The senior author is indebted to the John Simon Guggenheim Memorial Foundation for a
Fellowship held during 1972-3. This research was supported by the U.S. Office of Naval Re-
search under Contract N00014-66-C-0080.

ArPENDIX. THE TOTAL MAGNETIC ENERGY AND THE RATE OF
JOULE HEAT DISSIPATION

The total magnetic energy Ey is given by
27 m 1
Ey = (5%/87) f dg f sin 0.df f r2 (H2 4 H2 + H3) dr. (A1)
0 0 0
We have from equations (10) to (12)

) oY, oY, 1 0Y,0Y.
- o . gy By
r2(H3+Hj) = %%{(sﬁ*57+7}T7) (60 00 +sin20 0¢ a¢)

1 (3Y, 0¥, 7,3,
+ T80 09 (58 5~ )| (A2)
27 m 0Y, 0Y, 1 0Y,07,
. - i by - B
Let F,,, fo d¢fosmt9d9Ya[a@ 30 5 a¢]’ (A3)
2m g
K., = f dg f sin0.doY, ¥,Y,; (A9)
0 0
then one can show that
Fopy =3B+ 1) +y(v+1) —a(a+1)] Kypy (A5)
It follows from (A 5) that
27 m oY, oy, 1 0Y, 07,
i i et T it R
fo d¢J0sm0d0(ae B+ 5 o a¢) N, (A6)
where N, is defined in (43) and (44). Use was made here of the relation
2n m
Ky, = J dg f in0dOY, Y, = 83 N,J[B(8+1)]. (A7)
0 0
Since
27 m 0Y,0Y, 0Y,0Y,
i Sty Gl e 4 R
Jg aof 0|5 5= =] - (A9)
it follows that
By = (30°) 1, (A9)

1 1
=238, f LB+ 1) (Sylr)+Sy+ T ar (A10)
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The rate of joule heat dissipation D is given, in terms of the current density j and the conducti-
vity &, by
12
D= f ’%] , (A11)

where the integration is to be taken over the volume of the core. Now, by (3) and (10) to (12), we
have

dnbj, = §/ﬁfrziﬂy;yﬁ, (A12)

dnbrj, = ﬁn%&% %—Ig) (A 13)

by = 3 (s_l% ?;f . ayﬂ) (A14)

where sp==8,+LEx g, (A15)

and the factor 5 stems from the fact that 7 is non-dimensional, and the curl in (3) introduces a
factor of 1/b. In view of the orthogonality relation (A 6), we get, as for Ey,

= (b/167k) J, (A 16)
T3 frﬂ B+1) (Tl + T3+ 5§ dr. (A17)
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